FACULTY OF ENGINEERING

B.E. (Civil) VI – Semester (CBCS) (Main) Examination, April / May 2019

Subject: Theory of Structures - II

Time: 3 Hours

Max.Marks: 70

Note: Answer all questions form Part-A and any five questions from Part-B

$$PART - A (10x2 = 20 Marks)$$

- 1 Define influence line diagram and write the uses of the influence line diagram.
- 2 An U.D.I of intensity 20 kN/m and length 5 m, crosses a simply supported girder of span 20 m calculate the EUDELL.
- 3 Draw the influence line diagram for the force in the bottom chord member of 3 rd panel in the 6 panelled warren truss.
- 4 Calculate the length of suspension cable of span 100 m and central dip of 4 m supports of the cable are at the same level.
- 5 Define flexibility coefficient and write the properties of flexibility coefficient matrix.
- 6 Determine the flexibility matrix for a fixed beam by treating the end moments as redundant.
- 7 Define kinematic indeterminacy. The kinematic indeterminacy of a fixed beam is _____.
- 8 Develop the stiffness matrix for the beam shown in Fig. 1.

- 9 Name two software osed in the field of structural analysis.
- 10 Develop the stiffeess matrix for 2 noded beam elements with 3 Degrees of freedom at each node.

PART - B (5x10 = 50 Marks)

- 11 An uniformly distributed load of intensity of 15 kN/m of length 6 m crosses a simply supported girder of span 20 m. Find the maximum bending moment and shear force at a section 5 m from the right support. Also determine the absolute maximum bending moment and shear force in the girder.
- 12 The wheel loads shown in Fig. 2 roll over a beam of span 15 m. Find the maximum bending moment @ 5m section from the left end. Also, determine the position and magnitude of absolute maximum B.M. in the girder.

Download all NOTES and PAPERS at StudentSuvidha.com

^{..2}

13 Construct the influence line diagram for forces in the members U $_1U_2$, L_1 , L_2 for the truss shown in Fig. 3. Hence calculate the forces in these members due to a dead load of 20 kN/m and moving live load of 30 kN/m which is longer than the span. Take each panel 6 m width each, members $U_1L_1 = 3m$ and $U_2L_2 = 5m$.

- 14 A suspension bridge of 100 m span has a three hinged stiffening girder supported by cables having a central dip of 10 m. The left half of the span of the bridge is loaded with uniformly distributed load of intensity 25 kN/m. Determine the reactions and draw the bending moment and shear force diagram for the stiffening girder.
- 15 Analyse the beam shown in Fig. 4 using flexibility method and draw the BMD. Assume El is the same for all the members.

Fig .5

Download all NOTES and PAPERS at StudentSuvidha.com

17 Analyze the following continuous beam shown in Fig. 6 by either flexibility or stiffness method if the support …B€ sinks down by 10mm. Take E = 200 GPa and I = 1.35x1³0m⁴. Also draw BMD.

Download all NOTES and PAPERS at StudentSuvidha.com