FACULTY OF ENGINEERING

B.E. (Civil) VI - Semester (CBCS) (Main) Examination, April / May 2019

Subject: Theory of Structures - II
Time: 3 Hours
Max.Marks: 70
Note: Answer all questions form Part-A and any five questions from Part-B

$$
\text { PART - A (10x2 = } 20 \text { Marks) }
$$

1 Define influence line diagram and write the uses of the influence line diagram.
2 An U.D.I of intensity $20 \mathrm{kN} / \mathrm{m}$ and length 5 m , crosses a simply supported girder of span 20 m calculate the EUDELL.
3 Draw the influence line diagram for the force in the bottom chord member of $3^{\text {rd }}$ panel in the 6 panelled warren truss.

4 Calculate the length of suspension cable of span 100 m and central dip of 4 m supports of the cable are at the same level.

5 Define flexibility coefficient and write the properties of flexibility coefficient matrix.
6 Determine the flexibility matrix for a fixed beam by treating the end moments as redundant.

7 Define kinematic indeterminacy. The kinematic indeterminacy of a fixed beam is \qquad .
8 Develop the stiffness matrix for the beam shown in Fig. 1.

Fig. 1
9 Name two software lised in the field of structural analysis.
10 Develop the stiffyess matrix for 2 noded beam elements with 3 Degrees of freedom at each node.

PART - B (5x10 = 50 Marks)
11 An uniformly distributed load of intensity of $15 \mathrm{kN} / \mathrm{m}$ of length 6 m crosses a simply supported girder of span 20 m . Find the maximum bending moment and shear force at a section 5 m from the right support. Also determine the absolute maximum bending moment and shear force in the girder.

12 The wheel loads shown in Fig. 2 roll over a beam of span 15 m . Find the maximum bending moment @ 5 m section from the left end. Also, determine the position and magnitude of absolute maximum B.M. in the girder.

Fig. 2

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

-2-
13 Construct the influence line diagram for forces in the members $U{ }_{1} U_{2}, L_{1}, L_{2}$ for the truss shown in Fig. 3. Hence calculate the forces in these members due to a dead load of $20 \mathrm{kN} / \mathrm{m}$ and moving live load of $30 \mathrm{kN} / \mathrm{m}$ which is longer than the span. Take each panel 6 m width each, members $U_{1} L_{1}=3 \mathrm{~m}$ and $\mathrm{U}_{2} \mathrm{~L}_{2}=5 \mathrm{~m}$.

Fig. 3
14 A suspension bridge of 100 m span has a three hinged stiffening girder supported by cables having a central dip of 10 m . The left half of the span of the bridge is loaded with uniformly distributed load of intensity $25 \mathrm{kN} / \mathrm{m}$. Determine the reactions and draw the bending moment and shear force diagram for the stiffening girder.

15 Analyse the beam shown in Fig. 4 using flexibility method and draw the BMD. Assume El is the same for all the members.

Fig. 4
16 Analyze the playe truss shown in Fig. 5 using stiffness matrix approach.

Fig .5

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

17 Analyze the following continuous beam shown in Fig. 6 by either flexibility or stiffness method if the support $\ldots \mathrm{B} €$ sinks down by 10 mm . Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=1.35 \times \mathrm{t}^{3} \mathrm{~m}^{4}$. Also draw BMD.

1.5 El

Fig 6

